Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Traditional and Herbal Drugs ; (24): 5114-5122, 2020.
Article in Chinese | WPRIM | ID: wpr-846100

ABSTRACT

Objective: To study the chemical constituents of Artemisia argyi. Methods: The chemical constituents were isolated by silica gel column chromatography and HPLC, and its structure were identified by their spectral data and physicochemical properties analysis. Result Thirty-one compounds were isolated from A. argyi with the structures identified as (E)-β-farnesene (1), β-amyrin acetate (2), cycloartenol acetate (3), lupelo acetate (4), n-triacontanol (5), docosanoic acid (6), octadecanoic acid (7), tetracosanoic acid (8), (2R,4aR,8aR)-3,4,4a,8a-tetrahydro-4a-hydroxy-2,6,7,8a-tetramethyl-2-(4,8,12-trimethyl)-chromene-5,8-dione (9), α-spinasterol (10), monopalmitin (11), 12β,20β-dihydroxyldamar-23-en-3-ketone (12), monostearin (13), monolinolenin (14), monolinolein (15), monoolein (16), 3-(3-methyl-2-butenyl)acetophenone-4-O-β-D-glucoside (17), (-)cis-chrysan-thenol-β-D-glucoside (18), artemisioside (19), (1S,2S,4R)-p-menthane-1,2,8-triol-2-O-glucoside (20), (2E,6R)-2,6-dimethyl-2,7-octadiene-6-hydroxy-1-O- glycoside (21), ampelopsisionoside (22), 4-hydroxy acetophenone-4-O-β-D-glucoside (23), skimmin (24), scopoletin (25), dendanthemoside B (26), (4R)-p-menth-1-ene-7,8-diol-7-O-β-D-glucoside (27), (4R)-p-menthane-7,8-diol-7-O-β-D-glucoside (28), isorhoifolin (29), 1,3-dicaffeoylquinic acid (30) and pinitol (31). Conclusion: Compounds 1, 9, 17, 20, 21, 26, 28 are separated from Artemisia genus for the first time. Compounds 11, 12, 14-16, 18, 19, 23, 24, 27, 30, 31 are isolated from A. argyi for the first time.

2.
Chinese Journal of Biotechnology ; (12): 12-23, 2018.
Article in Chinese | WPRIM | ID: wpr-243646

ABSTRACT

Aphids are major agricultural pests that cause significant yield losses of crops each year. (E)-β-farnesene (EβF), as the main component of the aphid alarm pheromones, can interrupt aphid feeding and cause other conspecies in the vicinity to become agitated or disperse from their host plant. Furthermore, EβF can function as a kairomone in attracting aphid predators. EβF synthase genes, which encode enzymes that convert farnesyl diphosphate (FPP) to the acyclic sesquiterpene EβF, have been isolated and characterized from peppermint (Mentha × piperita and Mentha asiatica), Yuzu (Citrus junos), Douglas fir (Pseudotsuga menziesii), sweet wormwood (Artemisia annua) and chamomile (Matricaria recutita), respectively. Transgenic plant overexpressing EβF synthase genes has been one of the most efficient strategies for aphid management. In this review, the current statuses of transgenic plants engineered for aphid resistance were summarized. The plant-derived EβF synthase genes with their potential roles in aphid management via genetic-modified (GM) approaches were reviewed. The existing problem in GM plants with EβF synthase gene, such as low EβF emission was usually detected in the transgenic plant, was discussed and the development direction in this area was proposed.

3.
Chinese Traditional and Herbal Drugs ; (24): 4293-4301, 2018.
Article in Chinese | WPRIM | ID: wpr-851690

ABSTRACT

Objective To compare the effects of different drying methods on six bioactive constituents of Zingiberis Rhizoma (ZR), and explore the dynamic changes of bioactive constituents and water content during the drying process. Methods The multiple components in ZR were simultaneously measured by HPLC, and 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, α-curcumene, (E)- β-farnesene were used as indexes to evaluate ZR obtained from different drying methods. The Weibull function was used to simulate the dynamic change of water content, which was combined with the dynamic changes of components during the drying process of ZR to explore the principle of drying process. Results A total of 12 kinds of drying methods had a certain effect on the multiple components of ZR, and the components presented the fluctuation change in the drying process. The coefficient of correlation of Weibull functional simulation of ZR drying process was greater than 0.990. Conclusion ZR obtained by drying at 60 ℃ was better. Water content range of 6%-15% was suitable for processing ZR. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol were significantly negatively correlated with the moisture content of ZR. The Weibull distribution model could well simulate the fluctuation change of water content in the drying process, and it was of great significance for the prediction and quality control of ZR during drying process, which could also provide a technical basis for the use of modern drying technology to dry ZR at the same time.

SELECTION OF CITATIONS
SEARCH DETAIL